
Programmer’s Guide to the SRV Facility

Subroutines Providing Network and Message Support for
DICOM SOP Classes

Stephen M. Moore
Andy S. Gokhale

Mallinckrodt Institute of Radiology
Electronic Radiology Laboratory

510 South Kingshighway Boulevard
St. Louis, Missouri 63110

314/362-6965 (Voice)
314/362-6971 (FAX)

Version 2.10.0

August 3, 1998

This document describes a facility which is used to sup-
port the SOP classes defined in the DICOM V3 Standard.
These routines understand the format of DICOM mes-
sages and the order in which messages are transmitted,
but allow application programs to implement the body of
a service class.

 Copyright (c) 1995, 1998 RSNA, Washington University
/wuerlb/documentation/dicom/facilities/services.frm

dard
ers
 that are
mbina-
ment

nt and
ork
. The
d
 model,

ple-
ss
ation
equest
esponse,
ction

el).

r
quest
r pro-
d any
 entire
e SRV
ay
1 Introduction

Part 4 of the DICOM V3 Standard defines a number of SOP Classes. This part of the Stan
defines data models and the actions and responses that are expected of Service Class Us
(SCUs) and Service Class Providers (SCPs). Part 7 of the Standard defines the parameters
required and optional for DICOM messages and the structures of these messages. The co
tion of the service class definitions in Part 4 and the message definitions is needed to imple
DICOM SOP classes.

The DICOM Standard defines the terms SCU and SCP and avoids the use of the terms clie
server. It is common to think of a client application as the program which initiates the netw
connection and a server application as the program which accepts the network connection
DICOM Standard explicitly allows either the SCU or SCP to initiate an Association and sen
request messages This document describes some examples in terms of the Client/Server
but does not imply a one to one relationship between a server and an SCP application.

The functions in the SRV facility provide support for DICOM SOP classes but do not fully im
ment the classes by themselves. Applications use these functions to complete the SOP cla
implementation. The general model for the functions is shown in Figure 1 below. An applic
uses a request message and provides a callback function. The SRV facility transmits the r
message to the peer application and waits for one or more response messages. For each r
the requester’s callback function is called with the response from the peer. The callback fun
returns values to the SRV facility which tell the facility to maintain the dialog or abort (canc

The SRV facility provides a similar functionality for receiving request messages from a pee
application. After a “server” process accepts an Association, it sits in a loop and waits for re
messages from the peer. After the COMMAND group of a message is received, the serve
gram is notified and calls an appropriate SRV response function. The SRV function will rea
dataset which may complete the message and then call a server callback function with the
message. The callback function processes the message and returns to the SRV facility. Th
facility is responsible for sending the properly formatted response across the network and m
call the callback function again if more work is needed to complete the operation.

SRV Facility Peer
Application

Application

Request
Network
Messages

Callback

FIGURE 1. Application Sending Request Messages Using SRV Facility
1/54

ng one
ion.
 more

 and
er
 sup-
ssoci-
n the
Figure 2 shows the calling sequence for a C-FIND request that results in the SCP generati
match. The callback routine has sufficient context information to initiate a database operat
Each time the callback function is invoked, it finds a new match or determines there are no
entries that match the search criteria.

The SRV routines know the content of DICOM messages and use the MSG facility to build
parse COMMANDS. The SRV routines also use the DUL routines to communicate with pe
applications. Users of this facility use SRV routines to determine which service classes are
ported and then invoke DUL routines to actually request or accept Associations. Once an A
ation is established, the user communicates with the SRV routines until it is time to tear dow
Association.

Peer
Request SRV receives

C-FIND Request

SRV receives
C-FIND identifier

SCP Notified

SRV_CFindResponse Called

Respond with
dataset

Respond with
no more data

return NO match

callback

first callback,
initiate database op

return a match

second callback
continue search

FIGURE 2. Timing Diagram of a Simple C-FIND Sequence
2/54

n. As
of the
ta set
 struc-
needed.

which
py of
cture is

e
es. All
 the
ut

o data

he

ted
Applications and SRV routines cooperate when accepting messages from a peer applicatio
each message is received, a structure is allocated which contains the COMMAND portion
message. The structure is defined by the MSG facility. The SRV functions will read the da
(if present) which completes the message and add that data to the MSG structure. These
tures are released (freed) by SRV request and response routines when they are no longer
User applications should not attempt to free these structures.

Each SRV request function has an argument which is the address of a response structure
has been allocated (statically or dynamically) by the caller. If this address is not NULL, a co
the final response message is placed at this address. Only the status part of the MSG stru
copied for the caller. No variable length items (like lists) are copied. This feature allows th
caller to use this copy of the response message to print status information for debug purpos
work should be completed in the callback functions. It is anticipated that future versions of
SRV functions will operate asynchronously and will invoke the user callback functions witho
returning this extra copy of the final response message.

2 Data Structures

The SRV facility makes use of the data structures defined by the MSG facility. There are n
structures which are defined explicitly for the SRV facility.

3 Include Files

Any applications that use these routines should include the following files in their code in t
order given below.

#include “dicom.h”
#include “lst.h”
#include “dicom_objects.h”
#include “dulprotocol.h”
#include “dicom_messages.h”
#include “dicom_services.h”

4 Return Values

The following returns are possible from the SRV facility:

SRV_NORMAL Normal return from SRV routine.

SRV_UNSUPPORTEDSERVICE User requested a service class not suppor
by the SRV facility.

SRV_UNSUPPORTEDTRANSFERSYNTAX None of the transfer syntaxes for the pro-
posed presentation context are supported.
3/54

V

-

-

-

SRV_PEERREQUESTEDRELEASE When reading the next command, the SR
function detected the peer application
released the Association.

SRV_PEERABORTEDASSOCIATION When reading the next command, the SRV
function detected the peer aborted the Asso
ciation.

SRV_READPDVFAILED An error occurred while reading a PDV.

SRV_RECEIVEFAILED SRV function failed to receive a PDV frag-
ment.

SRV_UNEXPECTEDPRESENTATIONCON
TEXTID

SRV routine encountered an unexpected pre
sentation context ID when reading a PDU.

SRV_UNEXPECTEDPDVTYPE SRV routine encountered an unexpected
PDV type when reading a PDU.

SRV_SENDFAILED

SRV_NOSERVICEINASSOCIATION User function requested an SOP class that
was not accepted during Association nego-
tiation.

SRV_FILECREATEFAILED SRV routine failed to create a file.

SRV_LISTFAILURE SRV routine failed due to failure in LST
facility.

SRV_MALLOCFAILURE SRV function failed to allocate memory.

SRV_PRESENTATIONCONTEXTERROR SRV function failed to create a new presen
tation context (using the DUL facility).

SRV_PARSEFAILED SRV function failed to parse a PDU.

SRV_UNSUPPORTEDCOMMAND SRV function read a COMMAND group
with a command value that it did not under-
stand.

SRV_NOTRANSFERSYNTAX User requested a transfer syntax that is not
supported.

SRV_NOCALLBACK User invoked a request or response function
without supplying a callback function.

SRV_ILLEGALPARAMETER SRV function detected an illegal parameter
in an argument or structure presented by the
caller. Often indicates the type field in a
MSG structure has not been initialized.

SRV_OBJECTBUILDFAILED SRV routine failed to translate a structure
into a DICOM Information Object.

SRV_REQUESTFAILED An SRV request function failed.

SRV_RESPONSEFAILED An SRV response function failed.
4/54

-

-

5 SRV Routines

This section provides detailed documentation for each SRV facility routine.

SRV_UNEXPECTEDCOMMAND SRV function read a COMMAND group
from the network with an unexpected com-
mand value.

SRV_CALLBACKABORTEDSERVICE User callback aborted service by not return
ing SRV_NORMAL.

SRV_OBJECTACCESSFAILED SRV function failed to extract an attribute
from a DICOM Information Object.

SRV_QUERYLEVELATTRIBUTEMISSING SRV function failed to find the Query Level
attribute in a COMMAND.

SRV_ILLEGALQUERYLEVELATTRIBUTE SRV function detected an illegal value in the
Query Level attribute in a COMMAND.

SRV_PRESENTATIONCTXREJECTED SRV facility rejected a proposed Presenta
tion Context.

SRV_NETWORKTIMEOUT A complete command or data set was not
received within the timeout period.
5/54

ild the

g
ran

rvice
rvices

.
t least

on-

ld.
he pre-
s was

 caller
class is

r syn-
SRV_AcceptServiceClass

Name

SRV_AcceptServiceClass - determine if the SRV facility can accept a proposed service class and bu
appropriate response for the Association Accept message.

Synopsis

CONDITION SRV_AcceptServiceClass(DUL_PRESENTATIONCONTEXT *requestedCtx,
DUL_SC_ROLE role, DUL_ASSOCIATESERVICEPARAMETERS *params)

requestedCtx The presentation context for the service which has been requested by the Requestin
Application. This context includes the UID of the service class as well as proposed t
fer syntax UIDs.

role Role proposed by the application for this service class.
params The list of service parameters for the Association which is being negotiated. If the se

class is accepted, a new presentation context will be added to the list of accepted se
in this structure.

Description

SRV_AcceptServiceClass is called by an application which is accepting requests for Associations. This
function should be called one time for each SOP Class that is proposed by the requesting application
SRV_AcceptServiceClass determines if the proposed SOP Class is supported by this facility and if a
one of the proposed transfer syntaxes are supported. If these conditions are met, a new
DUL_PRESENTATIONCONTEXTITEM is allocated and added to the list of accepted presentation c
texts in the caller’s params structure.

If the facility does not support the SOP Class or any of the proposed transfer syntaxes, a new
DUL_PRESENTATIONCONTEXTITEM is still allocated, but with a failed code placed in the result fie
This item is added to the caller’s list of accepted presentation contexts (but with the failed result) so t
sentation context can be returned in the DUL accept PDU and notify the requestor why the SOP clas
rejected.

Notes

The caller’s list of accepted presentation contexts is used by other functions in this facility. When the
wishes to send or receive messages, the SRV routines will examine this list to determine if the SOP
supported.

This function only accepts Presentation Contexts which offer the DICOM explicit Little Endian transfe
tax.

Return Values

SRV_NORMAL SRV_LISTFAILURE
SRV_PRESENTATIONCONTEXTERROR SRV_UNSUPPORTEDTRANSFERSYNTAX
SRV_PRESENTATIONCTXREJECTED SRV_UNSUPPORTEDSERVICE
6/54

request

on.
ate an

 will

ller

 func-
SCP for
aller’s

nse

y to
SRV_CEchoRequest

Name

SRV_CEchoRequest - request a peer to provide the Verification Service Class by sending an ECHO
and waiting for an ECHO reply.

Synopsis

CONDITION SRV_CEchoRequest(DUL_ASSOCIATIONKEY **association,
DUL_ASSOCIATESERVICEPARAMETERS *params,
MSG_C_ECHO_REQ *echoRequest, MSG_C_ECHO_RESP *echoReply,
CONDITION (*callback)(), void *ctx, char *dirName)

association Key which describes the Association used for transmitting the ECHO request and
receiving the ECHO reply.

params The Parameters which define the service classes that are available on this Associati
echoRequest Pointer to structure where the user defines the parameters which are needed to cre

ECHO request command (as defined in Part 7 of the DICOM standard).
echoResponse Address of an MSG_C_ECHO_RESP structure allocated by the caller. This function

receive the echo response from the peer. If this address is not NULL, a copy of the
response message is stored at that address.

callback Address of user callback function to be called with ECHO Response from SCP.
ctx Pointer to user context information which will be passed to the callback function. Ca

uses this variable to contain any context required for callback function.
dirName Name for directory where files may be created for large data sets.

Description

SRV_CEchoRequest assists an application that wants to be an SCU of the Verification SOP class. This
tion constructs a C-ECHO-REQ Message and sends it to the peer application which is acting as the
the Verification class. This function waits for the response from the peer application and invokes the c
callback function.

The arguments to the callback function are:

MSG_C_ECHO_REQ *echoRequest
MSG_C_ECHO_RESP *echoResponse
void *ctx

The first two arguments are MSG structures that contain the C_ECHO Request and C_ECHO Respo
messages. The final argument is the caller’s ctx variable that is passed to SRV_CEchoRequest.

The callback function should return SRV_NORMAL. Any other return value will cause the SRV facilit
abort the Association.

Return Values

SRV_NORMAL SRV_OBJECTBUILDFAILED
SRV_NOCALLBACK SRV_REQUESTFAILED
SRV_UNSUPPORTEDSERVICE SRV_CALLBACKABORTEDSERVICE
SRV_ILLEGALPARAMETER
7/54

er.

ich

e
HO

ller

en an
age and
unc-
 then

nse

P class.
y to

lication.
SRV_CEchoResponse

Name

SRV_CEchoResponse - provide the Verification Service class by sending an ECHO response to a pe

Synopsis

CONDITION SRV_CEchoResponse(DUL_ASSOCIATIONKEY **association,
DUL_PRESENTATIONCONTEXT *presentationCtx,
MSG_ECHO_REQ **echoRequest, MSG_C_ECHO_RESP *echoReply,
CONDITION (*callback)(), void *ctx, char *dirName)

association Key which describes the Association used for transmitting the ECHO reply.
presentationCtx Pointer to presentation context to be used when sending the ECHO response.
echoRequest Address of a pointer to structure containing the parameters in the ECHO request wh

was received by the application.
echoReply Pointer to structure in the user’s area which will be filled in with the parameters of th

ECHO response command by this function. After the parameters are filled in, the EC
response is sent to the peer which requested the verification.

callback Address of user callback function to be called with ECHO Response from SCP.
ctx Pointer to user context information which will be passed to the callback function. Ca

uses this variable to contain any context required for callback.
dirName Name for directory where files may be created for large data sets.

Description

SRV_CEchoResponse assists an application that wants to be an SCP of the Verification SOP class. Wh
application receives an ECHO Response message, it calls this function with the ECHO request mess
other parameters.SRV_CEchoResponse checks the caller’s parameters and invokes the user’s callback f
tion. In the callback function, the caller fills in the parameters of the ECHO Response message and
returns to the SRV function. The arguments to the callback function are:

MSG_C_ECHO_REQUES *echoRequest
MSG_C_ECHO_RESP *echoResponse
void *ctx
DUL_PRESENTATIONCONTEXT *pc

The first two arguments are MSG structures that contain the C_ECHO Request and C_ECHO Respo
messages. The third argument is the caller’s ctx variable that is passed toSRV_CEchoResponse. The pc
argument gives the callback function a reference to the presentation context which describes this SO
The callback function should return SRV_NORMAL. Any other return value will cause the SRV facilit
abort the Association.

Notes

The caller passes the address of a pointer to the MSG_C_ECHO_REQ message received by the app
SRV_CEchoResponse frees the echo request and writes NULL into the caller’s pointer.

Return Values

SRV_NORMAL SRV_NOCALLBACK
SRV_ILLEGALPARAMETER SRV_CALLBACKABORTEDSERVICE
SRV_OBJECTBUILDFAILED SRV_RESPONSEFAILED
SRV_CALLBACKABORTEDSERVICE
8/54

ponse.
.

will

e

tion
 for the
allback

ry.

al
SRV_CFindRequest

Name

SRV_CFindRequest - support the query service class as an SCU by handling network messages.

Synopsis

CONDITION SRV_CFindRequest(DUL_ASSOCIATIONKEY **association,
DUL_ASSOCIATESERVICEPARAMETERS *params,
MSG_C_FIND_REQ *findRequest, MSG_C_FIND_RESP *findResponse,
CONDITION (*callback)(), void *ctx, char *dirName)

association The key for the association used to transmit the find request and receive the find res
params Parameters which defines the service classes that are available on this Association
findRequest Pointer to structure in caller’s memory which contains the find request.
findResponse Address of an MSG_C_FIND_RESP structure allocated by the caller. This function

receive the find response from the peer. If this address is not NULL, a copy of the
response is stored at that address.

callback Address of user routine which is called one time for each response received for the n
work.

ctx User context information which is supplied during call to callback function.
dirName Name for directory where files may be created for large data sets.

Description

SRV_CFindRequest assists an application that wants to be an SCU of the Query SOP class. This func
constructs a C_FIND_REQ Message and sends it to the peer application which is acting as the SCP
query class. This function waits for the responses from the peer application and invokes the user’s c
function one time for each response.

The arguments to the callback function are:

MSG_C_FIND_REQ *findRequest
MSG_C_FIND_RESP *findResponse
int responseCount
char *abstractSyntax
char *queryLevelString
void *callbackCtx

where

findRequest Pointer to MSG structure with C_FIND request.
findResponse Pointer to MSG structure with C_FIND response.
responseCount Number of times callback function has been called for this query (starts at 1).
abstractSyntax A character string which identifies the abstract syntax of the SOP Class of the que
queryLevelString A character string which identifies one of the four levels in the hierarchical query

model.
callbackCtx User’s callbackCtx argument which is used to maintain context information in the c

back function.

Notes
9/54

con-
The callback function should return SRV_NORMAL. Any other value will cause the SRV facility to dis
tinue the query.

Return Values

SRV_NORMAL
SRV_NOCALLBACK
SRV_ILLEGALPARAMETER
SRV_NOSERVICEINASSOCIATION
SRV_OBJECTACCESSFAILED
SRV_OBJECTBUILDFAILED
SRV_REQUESTFAILED
SRV_UNEXPECTEDCOMMAND
SRV_CALLBACKABORTEDSERVICE
10/54

d to

e

s

an
ther
an iden-

 in
meters:

ry.

al
SRV_CFindResponse

Name

SRV_CFindResponse - support the query service class as an SCP by handling network messages.

Synopsis

CONDITION SRV_CFindProvide(DUL_ASSOCIATIONKEY **association,
DUL_PRESENTATIONCONTEXT *ctx, MSG_C_FIND_REQ *findRequest,
MSG_C_FIND_RESP *findResponse, CONDITION (*callback)(),
void *callbackCtx, char *dirName)

association The key for the Association on which the FIND request was received and will be use
transmit the FIND response.

ctx Pointer to the presentation context for this FIND request.
findRequest Address of a pointer to the structure which contains the FIND request received by th

application.
findResponse Pointer to structure in caller’s space used to hold the FIND response message.
callback Address of callback routine which is used to invoke database query and provide sub

quent database retrievals.
callbackCtx Pointer to any context information required by the caller’s callback function.
dirName Name for directory where files may be created for large data sets.

Description

SRV_CFindResponse is used by an application which is acting as an SCP of the query service. When
application receives a C-FIND Request message, it calls this function with the C-FIND request and o
parameters. SRV_CFindResponse checks the caller’s parameters and polls the network, waiting for
tifier which contains the query.

OnceSRV_CFindResponse has read the identifier from the network, it creates an empty DCM_OBJECT
the identifier of the response message. The user’s callback routine is invoked with the following para

MSG_C_FIND_REQ *findRequest
MSG_C_FIND_RESP *findResponse
int responseCount
char *abstractSyntax
char *queryLevelString
void *callbackCtx

where

findRequest Pointer to MSG structure with C_FIND request.
findResponse Pointer to MSG structure with C_FIND response.
responseCount Number of times callback function has been called for this query (starts at 1).
abstractSyntax A character string which identifies the abstract syntax of the SOP Class of the que
queryLevelString A character string which identifies one of the four levels in the hierarchical query

model.
callbackCtx User’s callbackCtx argument which is used to maintain context information in the c

back function.
11/54

se is

age to
onse

r each
RV func-

f the
cause

lication.
If the responseCount is 1, the callback function initiates a new database search. When the first respon
received, the caller modifies the elements in the identifier in the response message and returns.
SRV_CFindResponse takes the identifier, formats a C-FIND response message, and transmits the mess
the requesting peer application. After the response is sent to the SCU application, SRV_CFindResp
invokes the callback function again.

If the responseCount is any value other than 1, the callback function continues the database search. Fo
match, the caller modifies the elements in the identifier in the response message and returns. The S
tion sends the proper message to the peer application for each response.

The user indicates the search is complete by placing the appropriate status value in the status field o
response message. The callback function should always return SRV_NORMAL. Any other value will
SRV_CFindRequest to abort the Association.

Notes

The caller passes the address of a pointer to the MSG_C_FIND_REQ message received by the app
SRV_CFindResponse frees the echo request and writes NULL into the caller’s pointer.

Return Values

SRV_NORMAL
SRV_NOCALLBACK
SRV_ILLEGALPARAMETER
SRV_RESPONSEFAILED
SRV_QUERYLEVELATTRIBUTEMISSING
SRV_ILLEGALQUERYLEVELATTRIBUTE
SRV_CALLBACKABORTEDSERVICE
12/54

pport.

ted

 will
copy

CP.

ich is
peer
re a

ry.

cal
SRV_CMoveRequest

Name

SRV_CMoveRequest - support the query/retrieve (MOVE) service as an SCU by providing network su

Synopsis

CONDITION SRV_CMoveRequest(DUL_ASSOCIATIONKEY **association,
DUL_ASSOCIATESERVICEPARAMETERS *params,
MSG_C_MOVE_REQ *moveRequest, MSG_C_MOVE_RESP *moveResponse,
CONDITION (*callback)(), void *ctx, char *dirName)

association The key used to transmit the move request and to receive all move responses.
params The structure which contains parameters which defines the association (and suppor

services).
moveRequest Pointer to structure containing the request message to be transmitted to an SCP.
moveResponse Address of an MSG_C_MOVE_RESP structure allocated by the caller. This function

receive the move response from the peer application. If this address is not NULL, a
of the response message is stored at that address.

callback Address of user function which is called for each move response received from an S
ctx User context information provided when caller’s callback function is called.
dirName Name for directory where files may be created for large data sets.

Description

SRV_CMoveRequest assists an application that wants to be an SCU of the Query/Retrieve SOP class
(MOVE). This function constructs a C-MOVE-REQ Message and sends it to the peer application wh
acting as the SCP for the Query/Retrieve SOP class. This function waits for the responses from the
application and invokes the caller’s callback function one time for each response. These responses a
number of “pending” responses followed by one “final” response.

The arguments to thecallback function are:

MSG_C_MOVE_REQ *moveRequest
MSG_C_MOVE_RESP *moveResponse
int responseCount
char *abstractSyntax
char *queryLevelString
void *callbackCtx

where

moveRequest Pointer to MSG structure with C-MOVE request.
moveResponse Pointer to MSG structure with C-MOVE response.
responseCount Number of times callback function has been called for this query (starts at 1).
abstractSyntax A character string which identifies the abstract syntax of the SOP Class of the que
queryLevelString A character string which identifies one of the four levels in the hierarchical query

model.
callbackCtx User’s callbackCtx argument which is used to maintain context information in the

back function.
13/54

 This

y to
On each invocation of the callback function, the user should examine the contents of the status field.
will indicate if the response message is a “pending” response or a “final” response.

The callback function should return SRV_NORMAL. Any other return value will cause the SRV facilit
abort the Association.

Notes

Return Values

SRV_NORMAL
SRV_NOCALLBACK
SRV_ILLEGALPARAMETER
SRV_OBJECTACCESSFAILED
SRV_NOSERVICEINASSOCIATION
SRV_OBJECTBUILDFAILED
SRV_REQUESTFAILED
SRV_UNEXPECTEDCOMMAND
SRV_CALLBACKABORTEDSERVICE
14/54

 sup-

to

he

ges to

-
lls the

ne

ry.

al
SRV_CMoveResponse

Name

SRV_CMoveResponse - support the query/retrieve service (MOVE) as an SCP by providing network
port.

Synopsis

CONDITION SRV_CMoveResponse(DUL_ASSOCIATIONKEY **association,
DUL_PRESENTATIONCONTEXT *ctx, MSG_C_MOVE_REQ **request,
MSG_C_MOVE_RESP *response,
CONDITION (*callback)(), void *callbackCtx, char *dirName)

association The key for the association on which the find request was received and will be used
transmit the find response.

ctx The presentation context on which the request was received.
request Address of a pointer to the structure which contains the MOVE request received by t

application.
response Pointer to structure in caller’s space used to hold the MOVE response message.
callback Address of callback routine which is used to invoke database query and to store ima

remote destination.
callbackCtx Pointer to any context information required by the caller’s callback function.
dirName Name for directory where files may be created for large data sets.

Description

SRV_CMoveRequest assists an application that wants to be an SCP of the Query/Retrieve SOP class
(MOVE). When an application receives a C-MOVE Request message, it calls this function with the C
MOVE request and other parameters. SRV_CMoveResponse checks the caller’s parameters and po
network, waiting for an identifer which contains the dataset identifying the images to be moved.

OnceSRV_CMoveResponse has read the identifier from the network, it invokes the user’s callback routi
with the following parameters:

MSG_C_MOVE_REQ *moveRequest

MSG_C_MOVE_RESP *moveResponse
int responseCount
char *abstractSyntax
char *queryLevelString
void *callbackCtx

where

moveRequest Pointer to MSG structure with C-MOVE request.
moveResponse Pointer to MSG structure with C-MOVE response.
responseCount Number of times callback function has been called for this query (starts at 1).
abstractSyntax A character string which identifies the abstract syntax of the SOP Class of the que
queryLevelString A character string which identifies one of the four levels in the hierarchical query

model.
callbackCtx User’s callbackCtx argument which is used to maintain context information in the c

back function.
15/54

 that

age

 value

CESS).

to

lication.
nc-

he appro-

form
If the responseCount is 1, thecallback function should initiate a new database search to find the images
match the keys found in the move command. Thecallback function can then establish an association with
the destination and transmit one or more images. Each time thecallback function returns,
SRV_CMoveResponse sends a status message to the application that invoked the move. If the final im
has not be sent,SRV_CMoveResponse invokes thecallback function again with aresponseCount that has
been incremented. This means it is up to thecallback function to maintain context and to know which
images have been transmitted.

Thecallback function indicates that there are more images to be transmitted by returning with a status
in the move response status (moveResponse->status) that is pending (ie.
MSG_K_C_MOVE_SUBOPERATIONSCONTINUING). Thecallback function indicates that the last
image has been transmitted by setting moveResponse->status to a final value (e.g., MSG_K_C_SUC

Notes

Thecallback function should return SRV_NORMAL. Any other return value will cause the SRV facility
abort the Association.

The caller passes the address of a pointer to the MSG_C_MOVE_REQ message received by the app
SRV_CMoveResponse frees the move request and writes NULL into the caller’s pointer. The callback fu
tion can send one or more images during each invocation.SRV_CMoveResponse makes no assumptions
about how many images are transmitted. If thecallback function updates the count fields in the response
message (remain completedSubOperations, failedSubOperations, warningSubOperations and sets t
priate bits in the response message structure,SRV_CFindResponse will include these values in the pending
responses that are sent to the peer that initiated the reqeust.

On each invocation, the callback function should examine the status value inmoveResponse. A value of
MSG_K_CANCEL means thatSRV_CMoveResponse has detected a cancel request from the application
that initiated the move. The callback function should stop sending images to the destination and per
any cleanup.

Return Values

SRV_NORMAL
SRV_NOCALLBACK
SRV_ILLEGALPARAMETER
SRV_RESPONSEFAILED
SRV_QUERYLEVELATTRIBUTEMISSING
SRV_ILLEGALQUERYLEVELATTRIBUTE
SRV_CALLBACKABORTEDSERVICE
16/54

d the

tion.
te a

n
the

e
he

 as a

. This
s the

nfor-

 net-
SRV_CStoreRequest

Name

SRV_CStoreRequest - request a peer application to store an object by sending a store command an
object.

Synopsis

CONDITION SRV_StoreRequest(DUL_ASSOCIATIONKEY **association,
DUL_ASSOCIATESERVICEPARAMETERS *params,
MSG_C_STORE_REQ *storeRequest, MSG_C_STORE_RESP *storeResponse,
CONDITION (*callback)(), void *callbackCtx, char *dirName)

association Key which describes the Association used for transmitting the object.
params he parameters which define the service classes which are supported on this Associa
storeRequest Pointer to structure where the user defines the parameters which are needed to crea

STORE command (as defined in Part 7 of the DICOM standard).
storeReponse Address of an MSG_C_STORE_RESP structure allocated by the caller. This functio

will receive the store response from the peer. If this address is not NULL, a copy of
response message is stored at that address.

callback User callback function which is called periodically while the object is transmitted to th
peer application. This mechanism allows the caller to monitor progress and cancel t
transmission.

callbackCtx A pointer to user context information. This pointer is passed to the callback function
parameter.

dirName Name for directory where files may be created for large data sets.

Description

SRV_CStoreRequest assists an application that wants to be an SCU of one of the Storage SOP classes
function constructs a C-STORE_REQ Message and sends it to the peer application which is acting a
SCP for the storage SOP class. After the request message is sent,SRV_CStoreRequest sends the data set
which contains the object of the store request.

The user specifies the data set for the operation by placing a legal DICOM Information Object in the
MSG_C_STORE_REQ structure or by including a file name in the structure that points to a DICOM I
mation Object.

The function calculates the number of bytes that are present in the data set and calls the usercallback func-
tion during the send process. The callback function is called after each P-DATA PDU is sent over the
work connection.

The arguments to thecallback function are:

MSG_C_STORE_REQ *storeRequest
MSG_C_STORE_RESP *storeResponse
unsigned long bytesTransmitted
unsigned long totalBytes
void *callbackCtx

where
17/54

g

 to
storeRequest Pointer to MSG structure with C_STORE request.
storeResponse Pointer to MSG structure with C_STORE response.
bytesTransmitted Number of bytes transmitted so far.
totalBytes Total number of bytes in data set.
callbackCtx User’s callbackCtx argument in the callback function.

On each invocation of thecallback function, the user should examine thestoreResponse pointer. This
pointer will be NULL during the store process. AfterSRV_CStoreRequest completes the process of sendin
the image, it waits for the C-STORE RESPONSE from the peer. When this process is received, thecallback
function is called a final time with the response message.

Notes

Thecallback function should return SRV_NORMAL. Any other return value will cause the SRV facility
abort the Association.

Return Values

SRV_NORMAL
SRV_NOCALLBACK
SRV_ILLEGALPARAMETER
SRV_NOSERVICEINASSOCIATION
SRV_OBJECTBUILDFAILED
SRV_REQUESTFAILED
SRV_UNEXPECTEDCOMMAND
SRV_CALLBACKABORTEDSERVICE
18/54

and stor-

 the

rs
d.

s.
ge and

from the

es-

e data
-

uesting
SRV_CStoreResponse

Name

SRV_CStoreResponse - support the Storage Service Class by accepting an object from the network
ing it in a disk file.

Synopsis

CONDITION SRV_CStoreResponse(DUL_ASSOCIATIONKEY **association,
DUL_PRESENTATIONCONTEXT *ctx, MSG_C_STORE_REQ **storeRequest,
MSG_C_STORE_RESP *storeReply, char *fileName,
CONDITION (*callback)(), void *callbackCtx, char *dirName)

association Key which describes the Association used for transmitting the command.
ctx Presentation context to be used when receiving the object.
storeRequest Address of a pointer to the MSG_C_STORE_REQ structure which was received from

peer application.
storeReply Pointer to structure in caller area that will be filled by this function with the paramete

used in the store reply which is sent to the peer application after the object is receive
fileName Name of the file which should be used to store the object received from the network.
callback User callback routine which is invoked during the storage process.
callbackCtx Pointer to any context information required by the user’s callback function.
dirName Name for directory where files may be created for large data sets.

Description

SRV_CStoreResponse assists an application that wants to be an SCP of one of the storage SOP classe
When an application receives a C-STORE REQ Message, it calls this function with the request messa
other parameters. This function opens the file name specified by the caller and receives the data set
network.

SRV_CStoreResponse estimates the size of the incoming data set from the SOP Class in the Request m
sage. Based on this estimate,SRV_CStoreResponse invokes the usercallback function approximately ten
times. (Since the size is only an estimate, thecallback can be invoked more or less than ten times).

Once the entire data set is received, thecallback function is invoked one final time. At this lastcallback, the
Store Response structure will contain a DICOM Information Object which was created by opening th
set that was just received. Thecallback function should examine the Information Object. In this last call
back, thecallback function should set status values in the Response message.

After the final callback, this function creates a C_STORE Response message and sends it to the req
application.

The arguments to the callback function are:

MSG_C_STORE_REQ *storeRequest
MSG_C_STORE_RESP *storeResponse
unsigned long bytesReceived
unsigned long totalBytes
DCM_Object **object
void *callbackCtx
DUL_PRESENTATIONCONTEXT *pc
19/54

 to
where

storeRequest Pointer to MSG structure with C_STORE request.
storeResponse Pointer to MSG structure with C_STORE response.
bytesReceived Number of bytes received so far.
totalBytes Estimate of number of bytes in object based on SOP class.
object Handle to the image received. Will be non-NULL after entire image received.
callbackCtx User’s callbackCtx argument.
pc Reference to presentation context for this SOP Class.

Notes

Thecallback function should return SRV_NORMAL. Any other return value will cause the SRV facility
abort the Association.

The caller passes the address of a pointer to the MSG_C_STORE_REQ received by the application.
SRV_CStoreResponse frees the store request and writes NULL into the caller’s pointer.

Return Values

SRV_NORMAL
SRV_NOCALLBACK
SRV_FILECREATEFAILED
SRV_RESPONSEFAILED
SRV_UNEXPECTEDPDVTYPE
SRV_OBJECTBUILDFAILED
SRV_CALLBACKABORTEDSERVICE
20/54

.
ed to
SRV_Debug

Name

SRV_Debug - change the state of debugging information for the SRV facility

Synopsis

void SRV_Debug(BOOLEAN flag)

flag Flag which indicates if debug information should be enabled (TRUE) or (FALSE).

Description

SRV_Debug sets an internal flag in the SRV facility which is used to control output of debug messages
When enabled, each routine in the facility prints useful messages to standard output which can be us
trace the progress of SRV functions.

The caller should pass TRUE to enable debugging and FALSE to disable.

Notes

Return Values

None
21/54

 func-
SRV_MessageIDIn

Name

SRV_MessageIDIn - Function to reclaim ID messages after they have been used.

Synopsis

void SRV_MessageIDIn(unsigned short messageID)

messageID The message ID to be returned to the system.

Description

The SRV facility maintains a set of message IDs which are used in the COMMAND group of a DICOM
message.SRV_MessageIDIn is called to return message IDs to the set after they have been used. This
tion in only called after all network references tomessageID are complete.

Notes

Return Values

None
22/54

SRV_MessageIDOut

Name

SRV_MessageIDOut - Get a unique message ID which can be used in a DICOM command.

Synopsis

unsigned short SRV_MessageIDOut(void)

Description

The SRV facility maintains a set of message IDs which are used in the COMMAND group of a DICOM
message.SRV_MessageIDOut is called to obtain the next unique ID from the set. This ID should be
returned to the SRV facility viaSRV_MessageIDIn after it is used .

Notes

Return Values

A unique message ID
23/54

,

nse.
d

be a

o
 the

P.
ller

s func-
n SCP
’s call-

ponse

y to
SRV_NActionRequest

Name

SRV_NActionRequest - support the N-ACTION command as an SCU by providing network support.

Synopsis

CONDITION SRV_NActionRequest(DUL_ASSOCIATIONKEY **association,
DUL_ASSOCIATESERVICEPARAMETERS *params, char *SOPClass,
MSG_N_ACTION_REQ *actionRequest, MSG_N_ACTION_RESP *actionResponse
CONDITION (*actionCallback)(), void *actionCtx, char *dirName)

association The key used to transmit the N-ACTION request and to receive the N-ACTION respo
params The structure which contains parameters which define the association (and supporte

services).
SOPClass UID of the SOP class used when the association was negotiated. Because this can

meta class, it may not be the same as the class UID in the N-ACTION request.
actionRequest Pointer to structure containing the N-ACTION request to be transmitted to an SCP.
actionResponseAddress of an MSG_N_ACTION_RESP structure allocated by the caller. This functi

will receive the action response from the peer. If this address is not NULL, a copy of
response message is stored at that address.

actionCallback Address of user callback function to be called with the N-ACTION response from SC
actionCtx Pointer to user context information which will be passed to the callback function. Ca

uses this variable to contain any context required for the callback function.
dirName Name for directory where files may be created for large data sets.

Description

SRV_NActionRequest assists an application that wants to be an SCU of a number of SOP classes. Thi
tion constructs an N-ACTION-REQ message and sends it to the peer application which is acting as a
for a SOP class. This function waits for the response from the peer application and invokes the caller
back function.

The arguments to the callback function are:

MSG_N_ACTION_REQ *actionRequest
MSG_N_ACTION_RESP *actionResponse
void *ctx

The first two arguments are MSG structures that contain the N_ACTION Request and N-ACTION Res
messages respectively. The final argument is the caller’s context variable that is passed to
SRV_NActionRequest.

The callback function should return SRV_NORMAL. Any other return value will cause the SRV facilit
abort the Association.

Notes

The caller is responsible for explicitly setting the following fields in the N-ACTION request message:
24/54

type
messageID
classUID
dataSetType
instanceUID
actionTypeID

Return Values

SRV_NORMAL
SRV_NOCALLBACK
SRV_UNSUPPORTEDSERVICE
SRV_ILLEGALPARAMETER
SRV_OBJECTBUILDFAILED
SRV_UNEXPECTEDCOMMAND
SRV_CALLBACKABORTEDSERVICE
SRV_REQUESTFAILED
25/54

t.

e,

 the

m

nse.

hen an
t and
k func-
d then

ge and

ponse

 mes-

y to
SRV_NActionResponse

Name

SRV_NActionResponse - support the N-ACTION command as an SCP by providing network suppor

Synopsis

CONDITION SRV_NActionResponse(DUL_ASSOCIATIONKEY **association,
DUL_PRESENTATIONCONTEXT *presentationCtx,
MSG_N_ACTION_REQ **actionRequest, MSG_N_ACTION_RESP *actionRespons
CONDITION (*actionCallback)(), void *actionCtx, char *dirName)

association The key used for the association which carried the N-ACTION request and will carry
N-ACTION response.

presentationCtx Presentation context for this N-ACTION request.
actionRequest Address of a pointer to the MSG_N_ACTION_REQ structure which was received fro

the peer application.
actionResponsePointer to structure in user’s memory which will be used to create the N-ACTION

response.
actionCallback Address of user’s callback function which is called to generate the N-ACTION respo
actionCtx User context information passed to the user actionCallback function.
dirName Name for directory where files may be created for large data sets.

Description

SRV_NActionResponse assists an application that wants to be an SCP of a number of SOP classes. W
application receives an N-ACTION request message, it calls this function with the N-ACTION reques
other parameters. SRV_NActionResponse checks the caller’s parameters and calls the user’s callbac
tion. In the callback function, the caller fills in the parameters of the N-ACTION response message an
returns to the SRV function.

After the callback function returns, SRV_NActionResponse constructs a N-ACTION Response messa
sends it to the peer application which sent the request message.

The arguments to the callback function are:

MSG_N_ACTION_REQ *actionRequest
MSG_N_ACTION_RESP *actionResponse
void *ctx
DUL_PRESENTATIONCONTEXT *pc

The first two arguments are MSG structures that contain the N_ACTION Request and N-ACTION Res
messages respectively. The third argument is the caller’s context variable that is passed to
SRV_NActionResponse. The presentation context describes the SOP class that was negotiated for this
sage.

The callback function should return SRV_NORMAL. Any other return value will cause the SRV facilit
abort the Association.

Notes
26/54

e

.

The callback function is responsible for explicitly setting the following fields in the N-ACTION respons
message:

type
messageIDRespondedTo
classUID
dataSetType
instanceUID
actionTypeID

The caller passes the address of a pointer to the MSG_N_ACTION_REQ received by the application
SRV_NActionResp frees the action request and writes NULL into the caller’s pointer.

Return Values

SRV_NORMAL
SRV_NOCALLBACK
SRV_ILLEGALPARAMETER
SRV_OBJECTBUILDFAILED
SRV_CALLBACKABORTEDSERVICE
27/54

e,

onse.
orted

be a

ill be

io
 the

P.
ller

s func-
an SCP
’s call-

nse mes-

y to
SRV_NCreateRequest

Name

SRV_NCreateRequest - support the N-CREATE command as an SCU by providing network support.

Synopsis

CONDITION SRV_NCreateRequest(DUL_ASSOCIATIONKEY ** association,
DUL_ASSOCIATESERVICEPARAMETERS *params, char *SOPClass,
MSG_N_CREATE_REQ *createRequest, MSG_N_CREATE_RESP *createRespons
CONDITION (*createCallback)(), void *createCtx, char *dirName)

association The key used to transmit the N-CREATE request and to receive the N-CREATE resp
params The structure which contains the parameters which define the association (and supp

classes).
SOPClass UID of the SOP class used when the association was negotiated. Because this can

meta class, it may not be the same as the class UID in the N-CREATE request.
createRequest Pointer to structure containing the N-CREATE response. When the N-CREATE is

received, memory for a structure will be allocated and the address of the structure w
passed back to the caller.

createResponseAddress of an MSG_N_CREATE_RESP structure allocated by the caller. This funct
will receive the create response from the peer. If this address is not NULL, a copy of
response message is stored at that address.

createCallback Address of user callback function to be called with the N-CREATE response from SC
createCtx Pointer to user context information which will be passed to the callback function. Ca

uses this variable to contain any context required for the callback function.
dirName Name for directory where files may be created for large data sets.

Description

SRV_NCreateRequest assists an application that wants to be an SCU of a number of SOP classes. Thi
tion constructs an N-CREATE-REQ message and sends it to the peer application which is acting as
for a SOP class. This function waits for the response from the peer application and invokes the caller
back function.

The arguments to the callback function are:

MSG_N_CREATE_REQ *createRequest
MSG_N_CREATE_RESP *createResponse
void *ctx

The first two arguments are MSG structures that contain the N_Create Request and N-Create Respo
sages respectively. The final argument is the caller’s context variable that is passed toSRV_NCreateRequest.

The callback function should return SRV_NORMAL. Any other return value will cause the SRV facilit
abort the Association.

Notes

The caller is responsible for explicitly setting the following fields in the N-CREATE request message:
28/54

type
messageID
classUID
dataSetType
instanceUID
dataSet

Return Values

SRV_NORMAL
SRV_NOCALLBACK
SRV_UNSUPPORTEDSERVICE
SRV_ILLEGAPARAMETER
SRV_OBJECTBUILDFAILED
SRV_UNEXPECTEDCOMMAND
SRV_CALLBACKABORTEDSERVICE
SRV_REQUESTFAILED
29/54

rt.

se,

 the

 peer

nse.

hen an
st and
c-

nd then
 N-

sponse

y to

se
SRV_NCreateResponse

Name

SRV_NCreateResponse - support the N-CREATE command as an SCP by providing network suppo

Synopsis

CONDITION SRV_NCreateResponse(DUL_ASSOCIATIONKEY **association,
DUL_PRESENTATIONCONTEXT *presentationCtx,
MSG_N_CREATE_REQ **createRequest, MSG_N_CREATE_RESP *createRespon
CONDITION (*createCallback)(), void *createCtx, char *dirName)

association The key used for the association which carried the N-CREATE request and will carry
N-CREATE response.

presentationCtx Presentation context for this N-CREATE request.
createRequest Address of a pointer to structure containing the N-CREATE request received from the

application.
createResponsePointer to structure in user’s memory that will be used to construct response.
createCallback Address of user’s callback function which is called to generate the N-CREATE respo
createCtx User context information passed to user createCallback function.
dirName Name for directory where files may be created for large data sets.

Description

SRV_NActionResponse assists an application that wants to be an SCP of a number of SOP classes. W
application receives an N-CREATE request message, it calls this function with the N-CREATE reque
other parameters.SRV_NCreateResponse checks the caller’s parameters and calls the user’s callback fun
tion. In the callback function, the caller fills in the parameters of the N-CREATE response message a
returns to the SRV function. After the callback function returns, SRV_NCreateResponse constructs a
CREATE Response message and sends it to the peer application which sent the request message.

The arguments to the callback function are:

MSG_N_CREATE_REQ *createRequest
MSG_N_CREATE_RESP *createResponse
void *ctx

The first two arguments are MSG structures that contain the N_CREATE Request and N-CREATE Re
messages respectively. The third argument is the caller’s context variable that is passed to
SRV_NCreateResponse. The presentation context describes the SOP class that was negotiated.

The callback function should return SRV_NORMAL. Any other return value will cause the SRV facilit
abort the Association.

Notes

The callback function is responsible for explicitly setting the following fields in the N-CREATE respon
message:
30/54

.

type
messageIDRespondedTo
classUID
dataSetType
instanceUID
dataSet

The caller passes the address of a pointer to the MSG_N_CREATE_REQ received by the application
SRV_NCreateResponse frees the action request and writes NULL into the caller’s pointer.

Return Values

SRV_NORMAL
SRV_NOCALLBACK
SRV_RESPONSEFAILED
SRV_ILLEGALPARAMETER
SRV_OBJECTBUILDFAILED
SRV_CALLBACKABORTEDSERVICE
31/54

onse.
 (and

be a

ion
 the

P.
ller

s func-
n SCP
’s call-

ponse

y to
SRV_NDeleteRequest

Name

SRV_NDeleteRequest - Support the N-DELETE service as an SCU by providing network support.

Synopsis

CONDITION SRV_NDeleteRequest(DUL_ASSOCIATIONKEY **association,
DUL_ASSOCIATESERVICEPARAMETERS *params, char *SOPClass,

MSG_N_DELETE_REQ *deleteRequest, MSG_N_DELETE_RESP *deleteResponse, CONDITION
(*deleteCallback)(), void *deleteCtx, char *dirName)

association The key used to transmit the N-DELETE request and to receive the N-DELETE resp
params The structure which contains the parameters which define the association
supported services).

SOPClass UID of the SOP class used when the association was negotiated. Because this can
meta class, it may not be the same as the class UID in the N-DELETE request.

deleteRequest Pointer to structure containing the N-DELETE request to be transmitted to an SCP.
deleteResponseAddress of an MSG_N_DELETE_RESP structure allocated by the caller. This funct

will receive the delete response from the peer. If this address is not NULL, a copy of
response message is stored at that address.

deleteCallback Address of user callback function to be called with the N-DELETE response from SC
deleteCtx Pointer to user context information which will be passed to teh callback function. Ca

uses this variable to contain any context required for the callback function.
dirName Name for directory where files may be created for large data sets.

Description

SRV_NDeleteRequest assists an application that wants to be an SCU of a number of SOP classes. Thi
tion constructs an N-DELETE-REQ message and sends it to the peer application which is acting as a
for a SOP class. This function waits for the response from the peer application and invokes the caller
back function.

The arguments to the callback function are:

MSG_N_DELETE_REQ*deleteRequest
MSG_N_DELETE_RESP *deleteResponse
void *ctx

The first two arguments are MSG structures that contain the N-DELETE Request and N-DELETE Res
messages respectively. The final argument is the caller’s context variable that is passed to
SRV_NDeleteRequest.

The callback function should return SRV_NORMAL. Any other return value will cause the SRV facilit
abort the Association.

Notes

The caller is responsible for explicitly setting the following fields in the N-DELETE request message:

type
messageID
32/54

classUID
dataSetType
nstanceUID

Return Values

SRV_NORMAL
SRV_NOCALLBACK
SRV_UNSUPPORTEDSERVICE
SRV_ILLEGALPARAMETER
SRV_OBJECTBUILDFAILED
SRV_UNEXPECTEDCOMMAND
SRV_CALLBACKABORTEDSERVICE
SRV_REQUESTFAILED
33/54

se,

 the

m

E

nse.

hen an
t and

ck func-
d then

ge and

ponse

y to

se
SRV_NDeleteResponse

Name

SRV_NDeleteResponse - Support the N-DELETE service as an SCP by providing network support.

Synopsis

CONDITION SRV_NDeleteResponse(DUL_ASSOCIATIONKEY **association,
DUL_PRESENTATIONCONTEXT *presentationCtx,
MSG_N_DELETE_REQ **deleteRequest, MSG_N_DELETE_RESP *deleteRespon
CONDITION (*deleteCallback)(), void *deleteCtx, char *dirName)

association The key used for the association which carried the N-DELETE request and will carry
N-DELETE response.

presentationCtx Presentation context for this N-DELETE request.
deleteRequest Address of a pointer to the MSG_N_DELETE_REQ structure which was received fro

the peer application.
deleteResponsePointer to the structure in user’s memory which will be used to create the N-DELET

response.
deleteCallback Address of user’s callback function which is used to generate the N- DELETE respo
deleteCtx User context information passed to user deleteCallback function.
dirName Name for directory where files may be created for large data sets.

Description

SRV_NDeleteResponse assists an application that wants to be an SCP of a number of SOP classes. W
application receives an N-DELETE request message, it calls this function with the N-DELETE reques
other parameters. SRV_NDeleteResponse checks the caller’s parameters and calls the user’s callba
tion. In the callback function, the caller fills in the parameters of the N-DELETE response message an
returns to the SRV function.

After the callback function returns, SRV_NDeleteResponse constructs a N-DELETE Response messa
sends it to the peer application which sent the request message.

The arguments to the callback function are:

MSG_N_DELETE_REQ*deleteRequest
MSG_N_DELETE_RESP *deleteResponse
void *ctx
DUL_PRESENTATIONCONTEXT *pc

The first two arguments are MSG structures that contain the N-DELETE Request and N-DELETE Res
messages respectively. The third argument is the caller’s context variable that is passed to
SRV_NDeleteResponse. The presentation context describes the SOP class.

The callback function should return SRV_NORMAL. Any other return value will cause the SRV facilit
abort the Association.

Notes

The callback function is responsible for explicitly setting the following fields in the N-DELETE respon
message:
34/54

.

type
messageIDRespondedTo
classUID
dataSetType
instanceUID

The caller passes the address of a pointer to the MSG_N_DELETE_REQ received by the application
SRV_NDeleteResponse frees the action request and writes NULL into the caller’s pointer.

Return Values

SRV_NORMAL
SRV_NOCALLBACK
SRV_RESPONSEFAILED
SRV_ILLEGALPARAMETER
SRV_OBJECTBUILDFAILED
SRV_CALLBACKABORTEDSERVICE
35/54

twork

his
ULL,

e

ller

. This
ich is
vokes

ENT-
 passed
SRV_NEventReportRequest

Name

SRV_NEventReportRequest - support the N-EVENT-REPORT command as an SCP by providing ne
support.

Synopsis

CONDITION SRV_NEventReportRequest(DUL_ASSOCIATIONKEY **association,
DUL_ASSOCIATESERVICEPARAMETERS *params,
MSG_N_EVENT_REPORT_REQ *eventRequest,
MSG_N_EVENT_REPORT_RESP *eventResponse,
CONDITION (*eventCallback)(), void *eventCtx, char *dirName)

association The key used to transmit the N-EVENT-REPORT request and to receive the
N-EVENT-REPORT response.

params The structure which contains parameters which define the association
(and supported services).

eventRequest Pointer to structure containing the N-EVENT-REPORT request to be transmitted to
an SCU.

eventResponse Address of an MSG_N_EVENT_REPORT_RESP structure allocated by the caller. T
function will receive the event report response from the peer. If this address is not N
a copy of the response message is stored at that address.

eventCallback Address of user callback function to be called with the N-EVENT_REPORT respons
from SCU.

eventCtx Pointer to user context information which will be passed to the callback function. Ca
uses this variable to contain any context required for the callback function.

dirName Name for directory where files may be created for large data sets.

Description

SRV_NEventReportRequest assists an application that wants to be an SCP of a number of SOP classes
function constructs an N-EVENT_REPORT request message and sends it to the peer application wh
acting as SCU for a SOP class. This function waits for the response from the peer application and in
the caller’s callback function.

The arguments to the callback function are:

MSG_N_EVENT_REPORT_REQ *eventRequest
MSG_N_EVENT_REPORT_RESP *eventResponse
void *ctx

The first two arguments are MSG structures that contain the N-EVENT-REPORT Request and N-EV
REPORT Response messages respectively. The final argument is the caller’s context variable that is
to SRV_NEventReportRequest. The callback function should return SRV_NORMAL. Any other return
value will cause the SRV facility to abort the Association.

Notes
36/54

es-
The caller is responsible for explicitly setting the following fields in the N-EVENT-REPORT request m
sage:

type
messageID
classUID
dataSetType
nstanceUID
eventTypeID

Return Values

SRV_NORMAL
SRV_NOCALLBACK
SRV_UNSUPPORTEDSERVICE
SRV_ILLEGALPARAMETER
SRV_OBJECTBUILDFAILED
SRV_UNEXPECTEDCOMMAND
SRV_CALLBACKABORTEDSERVICE
SRV_REQUESTFAILED
37/54

twork

will
r this

es.
N-
arame-
 the N-

ENT-
 passed

y to
SRV_NEventReportResponse

Name

SRV_NEventReportResponse - support the N-EVENT-REPORT command as an SCU by providing ne
support.

Synopsis

CONDITION SRV_NEventReportResponse(DUL_ASSOCIATIONKEY **association,
DUL_PRESENTATIONCONTEXT *presentationCtx,
MSG_N_EVENT_REPORT_REQ **eventRequest,
MSG_N_EVENT_REPORT_RESP *eventResponse,
CONDITION (*eventCallback)(), void *eventCtx, char *dirName)

association The key used for the association which carried the N-EVENT-REPORT request and
carry the N-EVENT-REPORT response. presentationCtx Presentation context fo
N-EVENT-REPORT request.

eventRequest Address of a pointer to the MSG_N_EVENT_REPORT_REQ structure which was
received from the peer application.

eventResponse Pointer to the structure in user’s memory which will be used to create the
N-EVENT-REPORT response.

eventCallback Address of user callback function which is used to generate the
N-EVENT-REPORT response.

eventCtx User context information passed to user eventCallback function.
dirName Name for directory where files may be created for large data sets.

Description

SRV_NEventReportResponse assists an application that wants to be an SCU of a number of SOP class
When an application receives an N-EVENT-REPORT request message, it calls this function with the
EVENT-REPORT request and other parameters. SRV_NEventReportResponse checks the caller’s p
ters and calls the user’s callback function. In the callback function, the caller fills in the parameters of
EVENT-REPORT response message and then returns to the SRV function.

After the callback function returns, SRV_NEventReportResponse constructs a N-EVENT-REPORT
Response message and sends it to the peer application which sent the request message.

The arguments to the callback function are:

MSG_N_EVENT_REPORT_REQ *eventRequest
MSG_N_EVENT_REPORT_RESP *eventResponse
void *ctx
DUL_PRESENTATIONCONTEXT *pc

The first two arguments are MSG structures that contain the N-EVENT-REPORT Request and N-EV
REPORT Response messages respectively. The third argument is the caller’s context variable that is
to SRV_NEventReportResponse. The presentation context describes the SOP class.

The callback function should return SRV_NORMAL. Any other return value will cause the SRV facilit
abort the Association.
38/54

pplica-
Notes

The callback function is responsible for explicitly setting the following fields in the N-EVENT-REPORT
request message.

type
messageIDRespondedTo
class UID
dataSetType
instanceUID
dataSet

The caller passes the address of a pointer to the MSG_N_EVENT_REPORT_REQ received by the a
tion. SRV_NEventReportResponse frees the action request and writes NULL into the caller’s pointer.

Return Values

SRV_NORMAL
SRV_NOCALLBACK
SRV_RESPONSEFAILED
SRV_ILLEGALPARAMETER
SRV_OBJECTBUILDFAILED
SRV_CALLBACKABORTEDSERVICE
39/54

ted

 be a

ill
ponse

ller

nction
CP for a
llback

mes-
quest.

y to
SRV_NGetRequest

Name

SRV_NGetRequest - support the N-GET command as an SCU by providing network support.

Synopsis

CONDITION SRV_NGetRequest(DUL_ASSOCIATIONKEY **association,
DUL_ASSOCIATESERVICEPARAMETERS *params, char *SOPClass,
MSG_N_GET_REQ *getRequest, MSG_N_GET_RESP *getResponse,
CONDITION (*getCallback)(), void *getCtx, char *dirName)

association The key used to transmit the N-GET request and to receive the N-GET response.
params The structure which contains parameters which defines the association (and suppor

services).
SOPClass UID of the SOP class used when the association was negotiated. Because this can

meta class, it may not be the same as the class UID in the N-GET request.
getRequest Pointer to structure containing the N-GET request to be transmitted to an SCP.
getResponse Address of an MSG_N_GET_RESP structure allocated by the caller. This function w

receive the get response from the peer. If this address is not NULL, a copy of the res
message is stored at that address.

getCallback Address of user callback function to be called with the N-GET response from SCP.
getCtx Pointer to user context information which will be passed to the callback function. Ca

uses this variable to contain any context required for the callback.
dirName Name for directory where files may be created for large data sets.

Description

SRV_NGetRequest assists an application that wants to be an SCU of a number of SOP classes. This fu
constructs an N-GET Request message and sends it to the peer application which is acting as the S
SOP class. This function waits for the response from the peer application and invokes the caller’s ca
function.

The arguments to the callback function are:

MSG_N_GET_REQ *getRequest
MSG_N_GET_RESP *getResponse
void *ctx

The first two arguments are MSG structures that contain the N-GET Request and N-GET Response
sages respectively.The final argument is the caller’s context variable that is passed to SRV_NGetRe

The callback function should return SRV_NORMAL. Any other return value will cause the SRV facilit
abort the Association.

Notes

The caller is responsible for explicitly setting the following fields in the N-GET request message:
40/54

type
messageID
classUID
ataSetType
attributeList
attributeCount

Return Values

SRV_NORMAL
SRV_NOCALLBACK
SRV_UNSUPPORTEDSERVICE
SRV_ILLEGALPARAMETER
SRV_OBJECTBUILDFAILED
SRV_UNEXPECTEDCOMMAND
SRV_CALLBACKABORTEDSERVICE
SRV_REQUESTFAILED
41/54

e

n an
her
n. In the
 to the

s it

mes-

y to

es-
SRV_NGetResponse

Name

SRV_NGetResponse - support the N-GET command as an SCP by providing network support.

Synopsis

CONDITION SRV_NGetResponse(DUL_ASSOCIATIONKEY **association,
DUL_PRESENTATIONCONTEXT *presentationCtx,
MSG_N_GET_REQ **getRequest, MSG_N_GET_RESP *getResponse,
CONDITION (*getCallback)(), void *getCtx, char *dirName)

association The key used for the association which carried the N-GET request and will carry the
N-GET response.

presentationCtx Presentation context for this N-GET request.
getRequest Address of a pointer to the MSG_N_GET_REQ structure which was received from th

peer application.
getResponse Pointer to structure in user’s memory which will be used to create N-GET response
getCallback Address of user callback function which is used to generate the Get response.
getCtx User context information passed to user getCallback function.
dirName Name for directory where files may be created for large data sets.

Description

SRV_NGetResponse assists an application that wants to be an SCP of a number of SOP classes. Whe
application receives an N-GET request message, it calls this function with the N-GET request and ot
parameters. SRV_NGetResponse checks the caller’s parameters and calls the user’s callback functio
callback function, the caller fills in the parameters of the N-GET response message and then returns
SRV function.

After the callback function returns,SRV_NGetResponse constructs a N-GET Response message and send
to the peer application which sent the request message.

The arguments to the callback function are:

MSG_N_GET_REQ *getRequest
MSG_N_GET_RESP *getResponse
void *ctx
DUL_PRESENTATIONCONTEXT *pc

The first two arguments are MSG structures that contain the N-GET Request and N-GET Response
sages respectively. The third argument is the caller’s context variable that is passed toSRV_NGetResponse.
The presentation context describes the SOP Class.

The callback function should return SRV_NORMAL. Any other return value will cause the SRV facilit
abort the Association.

Notes

The callback function is responsible for explicitly setting the following fields in the N-GET response m
sage.
42/54

type
messageIDRespondedTo
class UID
dataSetType
instanceUID
dataSet

The caller passes the address of a pointer to the MSG_N_GET_REQ received by the application.
SRV_NGetResponse frees the action request and writes NULL into the caller’s pointer.

Return Values

SRV_NORMAL
SRV_RESPONSEFAILED
SRV_ILLEGALPARAMETER
SRV_OBJECTBUILDFAILED
SRV_CALLBACKABORTEDSERVICE
43/54

ted

 be a

ill
ponse

ller

nction
P for a

llback

essages

y to
SRV_NSetRequest

Name

SRV_NSetRequest - support the N-SET command as an SCU by providing network support.

Synopsis

CONDITION SRV_NSetRequest(DUL_ASSOCIATIONKEY **association,
DUL_ASSOCIATESERVICEPARAMETERS *params, char *SOPClass,
MSG_N_SET_REQ *setRequest, MSG_N_SET_RESP **setResponse,
CONDITION (*setCallback)(), void *setCtx, char *dirName)

association The key used to transmit the N-SET request and to receive the N-SET response.
params The structure which contains parameters which defines the association (and suppor

services).
SOPClass UID of the SOP class used when the association was negotiated. Because this can

meta class, it may not be the same as the class UID in the N-SET request.
setRequest Pointer to structure containing the N-SET request to be transmitted to an SCP.
setResponse Address of an MSG_N_SET_RESP structure allocated by the caller. This function w

receive the set response from the peer. If this address is not NULL, a copy of the res
message is stored at that address.

setCallback Address of user callback function to be called with the N-SET response from SCP.
setCtx Pointer to user context information which will be passed to the callback function. Ca

uses this variable to contain any context required for the callback function.
dirName Name for directory where files may be created for large data sets.

Description

SRV_NSetRequest assists an application that wants to be an SCU of a number of SOP classes. This fu
constructs an N-SET-Request message and sends it to the peer application which is acting as an SC
SOP class. This function waits for the response from the peer application and invokes the caller’s ca
function.

The arguments to the callback function are:

MSG_N_SET_REQ *setRequest
MSG_N_SET_RESP *setResponse
void *ctx

The first two arguments are MSG structures that contain the N-SET Request and N-SET Response m
respectively. The final argument is the caller’s context variable that is passed toSRV_NSetRequest.

The callback function should return SRV_NORMAL. Any other return value will cause the SRV facilit
abort the Association.

Notes

The caller is responsible for explicitly setting the following fields in the N-SET request message:
44/54

type
messageID
classUID
dataSetType
instanceUID
dataSet

Return Values

SRV_NORMAL
SRV_UNSUPPORTEDSERVICE
SRV_ILLEGALPARAMETER
SRV_OBJECTBUILDFAILED
SRV_UNEXPECTEDCOMMAND
SRV_CALLBACKABORTEDSERVICE
SRV_REQUESTFAILED
45/54

st,

e

n an
er
 the

 to the

s it

essages
. The

y to

mes-
SRV_NSetResponse

Name

SRV_NSetResponse - Support the N-SET command as an SCP by providing network support.

Synopsis

CONDITION SRV_NSetProvide(DUL_ASSOCIATIONKEY **association,
DUL_PRESENTATIONCONTEXT *presentationCtx, MSG_N_SET_REQ **setReque
MSG_N_SET_RESP *setResponse, CONDITION (*setCallback)(), void *setCtx,
char *dirName)

association The key used for the association which carried the N-SET request and will carry the
N-SET response.

presentationCtx Presentation context for this N-SET request.
setRequest Address of a pointer to the MSG_N_SET_REQ structure which was received from th

peer application.
setResponse Pointer to structure in user’s memory which will be used to create N-SET response.
setCallback Address of user callback function which is used to generate a Set response.
setCtx User context information passed to user setCallback function.
dirName Name for directory where files may be created for large data sets.

Description

SRV_NSetResponse assists an application that wants to be an SCP of a number of SOP classes. Whe
application receives an N-SET request message, it calls this function with the N-SET request and oth
parameters.SRV_NSetResponse checks the caller’s parameters and calls the user’s callback function. In
callback function, the caller fills in the parameters of the N-SET response message and then returns
SRV function.

After the callback function returns,SRV_NSetResponse constructs a N-SET Response message and send
to the peer application which sent the request message.

The arguments to the callback function are:

MSG_N_SET_REQ *SetRequest
MSG_N_SET_RESP *SetResponse
void *ctx
DUL_PRESENTATIONCONTEXT *pc

The first two arguments are MSG structures that contain the N-SET Request and N-SET Response m
respectively. The third argument is the caller’s context variable that is passed to SRV_NSetResponse
presentation context describes the SOP class.

The callback function should return SRV_NORMAL. Any other return value will cause the SRV facilit
abort the Association.

Notes

The callback function is responsible for explicitly setting the following fields in the N-SET Response
sage.
46/54

type
messageIDRespondedTo
class UID
dataSetType
instanceUID
dataSet

The caller passes the address of a pointer to the MSG_N_SET_REQ received by the application.
SRV_NSetResponse frees the action request and writes NULL into the caller’s pointer.

Return Values

SRV_NORMAL
SRV_NOCALLBACK
SRV_RESPONSEFAILED
SRV_ILLEGALPARAMETER
SRV_OBJECTBUILDFAILED
SRV_CALLBACKABORTEDSERVICE
47/54

ork.

J

nd.
d

r

it

or

sage
 the

nd

ed

 to

d and

ned
SRV_ReceiveCommand

Name

SRV_ReceiveCommand - check the status of the network and receive the next command on the netw

Synopsis

CONDITION SRV_ReceiveCommand(DUL_ASSOCIATIONKEY **association,
DUL_ASSOCIATESERVICEPARAMETERS *params, DUL_BLOCKOPTIONS block,
int timeout, DUL_PRESENTATIONCONTEXTID *ctxID, unsigned short *command,
MSG_TYPE *messageType, void **messageArg)

association The key which describes which association to use to check the network for a comma
params The set of service parameters which describe the services (and associate
presentation contexts) which are valid for this association.

block A flag indicating if the caller wishes to block waiting for a command (DUL_BLOCK) o
return immediately if there is no command present (DUL_NOBLOCK).

timeout If the application chooses to block and wait for a command, the amount of time to wa
before returning to the caller (in seconds).

ctxID Pointer to a caller variable where this function will store the presentation context ID f
the command received from the network.

command Pointer to a caller variable where this function will store the command value from the
COMMAND group which was read from the network.

messageType Pointer to a caller variable where this function will store one of the enumerated mes
types from the MSG facility. There should be a one to one correspondence between
COMMAND received from the network and this message type.

messageArg Address of a pointer in the caller’s space. This function allocates a MSG structure a
writes the address of the allocated structure in the caller’s messageArg pointer.

Description

SRV_ReceiveCommand is used to poll an Association and read the next available COMMAND (as defin
by data in the COMMAND group). The caller provides association information and theblock andtimeout
parameters which are used to control the DUL routines. These parameters instruct the DUL routines
block while waiting for data from the network or to return after a timeout.

If a COMMAND is successfully read from the network, this function calls an MSG routine to parse the
COMMAND and translate it into one of the fixed MSG structures. Memory for the structure is allocate
the address of the structure is returned to the caller via themessageArg parameter. This function also writes
the Command Field value from the COMMAND into the variable pointed at bycommand.

Notes

If the function reads a COMMAND but is not able to parse it, the user should examine the value retur
through command. All legal values in the Command Field should be supported.

Return Values

SRV_NORMAL SRV_RECEIVEFAILED
SRV_UNSUPPORTEDCOMMAND SRV_ILLEGALASSOCIATION
SRV_PEERREQUESTEDRELEASE SRV_PEERABORTEDASSOCIATION
SRV_READPDVFAILED SRV_NETWORKTIMEOUT
48/54

d.

vides
tines.
urn

handle

e func-
 direc-
d.
SRV_ReceiveDataSet

Name

SRV_ReceiveDataSet - poll an Association and read what is expected to be a data set.

Synopsis

CONDITION SRV_ReceiveDataSet(DUL_ASSOCIATIONKEY **association,
DUL_PRESENTATIONCONTEXT *presentationCtx, DUL_BLOCKOPTIONS block,
int timeout, char *dirName, DCM_OBJECT **dataSet)

association The key used to receive the database from the network
presentationCtx Presentation context on which we expect to receive the dataset.
block Flag to be passed to network routines for blocking or non blocking I/O.
timeout Timeout passed to network routines.
dirName Name for directory where files may be created for (possibly large) data sets.
dataSet Address of DICOM object variable which will be created when the dataset is receive

Description

SRV_ReceiveDataSet is used to poll an Association and read the next available data set. The caller pro
association information and the block and timeout parameters which are used to control the DUL rou
These parameters instruct the DUL routines to block while waiting for data from the network or to ret
after a timeout.

If the data set is successfully read from the network, a DICOM Information Object is created and the
stored at the address specified by dataSet.

Notes

dirName is an optional parameter. Some datasets are too large to store directly in memory. When th
tion determines that a large data set is being read, it will write it to a file. This file will be stored in the
tory indicated by dirName. If dirName is empty (““) or NULL, the current working directory is assume

Return Values

SRV_NORMAL
SRV_RECEIVEFAILED
SRV_UNEXPECTEDPRESENTATIONCONTEXTID
SRV_UNEXPECTEDPDVTYPE
SRV_ILLEGALASSOCIATION
SRV_PEERREQUESTEDRELEASE
SRV_PEERABORTEDASSOCIATION
SRV_READPDVFAILED
SRV_NETWORKTIMEOUT
49/54

ted

func-
t the

lt
lt) so
P class
SRV_RejectServiceClass

Name

SRV_RejectServiceClass - reject an SOP class proposed by a calling application.

Synopsis

CONDITION SRV_RejectServiceClass(DUL_PRESENTATIONCONTEXT *requestedCtx,
unsigned short result, DUL_ASSOCIATESERVICEPARAMETERS *params)

requestedCtx Pointer to requested Presentation Context which user is rejecting.
result One of the defined DUL results which provide reasons for rejecting a

Presentation Context.
params The structure which contains parameters which defines the association (and suppor

services).

Description

SRV_RejectServiceClass is called by an application which is accepting requests for Associations. This
tion should be called one time for each SOP Class that is proposed by the requesting application tha
accepting application wishes to reject.

This function allocates a DUL_PRESENTATIONCONTEXTITEM with a failed code placed in the resu
field. This item is added to the caller’s list of accepted presentation contexts (but with the failed resu
the presentation context can be returned in the DUL accept PDU and notifiy the requestor why the SO
was rejected.

Notes

Return Values

SRV_NORMAL
SRV_LISTFAILURE
SRV_PRESENTATIONCONTEXTERROR
50/54

ion con-

n

ion. If
d
n is

ervice
ult. If the
 infor-
 caller

f the
on Con-

ntax.
SRV_RequestServiceClass

Name

SRV_RequestServiceClass - request a service class as an Association initiator and build a presentat
text to be transmitted to an Association acceptor.

Synopsis

CONDITION SRV_RequestServiceClass(char *SOPClass, DUL_SC_ROLE role,
DUL_ASSOCIATESERVICEPARAMETERS *params)

SOPClass The UID of the SOP Class that is being requested by the user.
role The role the user is proposing for the service class for this Association. The user ca

propose to be an SCU, an SCP, either an SCU or an SCP, or the default.
params Pointer to a user structure which contains the parameters which define the Associat

the SRV facility supports the requested service, a presentation context is created an
added to the list of presentation contexts which will be proposed when the Associatio
requested.

Description

This function is called by an application which is proposing an Association and wishes to request a s
class. The application can request the Service Class as an SCU or as an SCP or as both or as defa
application requests the service class in one of these four roles, the Association negotiation includes
mation which proposes the Presentation Context according to the mode specified by the caller. If the
uses the default mode, the SRV (and DUL) facility will assume the default SCU mode.

SRV_RequestServiceClass determines if the SRV facility supports the service class via a table lookup. I
class is supported, it builds a Presentation Context for the service and adds it to the list of Presentati
texts for the Association which is to be requested.

Notes

This function creates a Presentation Context which uses the DICOM implicit Little Endian transfer sy

Return Values

SRV_NORMAL
SRV_LISTFAILURE
SRV_MALLOCFAILURE
SRV_PRESENTATIONCONTEXTERROR
SRV_UNSUPPORTEDSERVICE
51/54

. The
s.
or
SRV_SendCommand

Name

SRV_SendCommand - send a DICOM command to a peer using an established Association.

Synopsis

CONDITION SRV_SendCommand(DUL_ASSOCIATIONKEY **association,
DUL_PRESENTATIONCONTEXT *context, DCM_OBJECT **object)

association Key which describes the Association used for transmitting the command.
context Presentation context to be used when sending the command.
object The DICOM object which contains the attributes of the command to be transmitted.

Description

SRV_SendCommand sends a DICOM command to a peer application using an established association
user specifies the command to be sent by providing a DCM_OBJECT containing the proper attribute
SRV_SendCommand uses the object passed by the caller and constructs the proper PDVs and PDUs f
transmission.

Notes

This function is normally called by higher level SRV functions (e.g.,SRV_CStoreRequest).

Return Values

SRV_NORMAL
SRV_NOTRANSFERSYNTAX
SRV_SENDFAILED
52/54

n.

he
he

ser’s

ser

 trans-
SRV_SendDataSet

Name

CONDITION SRV_SendDataSet - send a DICOM data set to a peer using an established Associatio

Synopsis

CONDITION SRV_SendDataSet(DUL_ASSOCIATIONKEY **association,
DUL_PRESENTATIONCONTEXT *context, DCM_OBJECT **object,
CONDITION (*callback)(), void *callbackCtx, unsigned long length)

association Key which describes the Association used for transmitting the command.
context Presentation context to be used when sending the dataset.
object The DICOM object which contains the attributes of the dataset to be transmitted.
callback User callback function which is called periodically while the data set is sent across t

network. This allows the application to monitor the rate of transmission and cancel t
transmission.

callbackCtx User context information which is passed to the callback function as a parameter.
length Length in bytes of the amount of data to transmit over the network before calling the u

callback function.

Description

SRV_SendDataSet transmits a single data set across the network using an existing Association. The u
specifies the data set to be sent by providing a DCM_OBJECT containing the proper attributes.
SRV_SendDataSet uses the object passed by the caller and constructs the proper PDVs and PDUs for
mission.

Notes

SRV_SendDataSet is normally called by higher level SRV functions (e.g., SRV_CStoreRequest).

Return Values

SRV_NORMAL
SRV_OBJECTACCESSFAILED
SRV_NOTRANSFERSYNTAX
SRV_SENDFAILED
53/54

 find
lity.

ay not

d will

r incon-
his func-
ral
SRV_TestForCancel

Name

SRV_TestForCancel - test the network for a cancel command and read it, if present

Synopsis

CONDITION SRV_TestForCancel(DUL_ASSOCIATIONKEY **association,
DUL_BLOCKOPTIONS block, int timeout,
DUL_PRESENTATIONCONTEXTID ctxID, unsigned short *command,
MSG_TYPE *messageType, void **messageArg)

association Key which describes the Association used for receiving the command.
block Flag indicating if the operation should be performed in blocking mode.
timeout Indicates length of time to wait if non-blocking.
messageType Address of structure in user’s memory to hold message type (if one is present).
messageArg Address of a pointer in the user’s memory. If a command is found on the network,

SRV_TestForCancel will allocate a new MSG structure and place the address
at messageArg.

Description

SRV_TestForCancel is used by functions that wish to test for cancel commands during operations (like a
or move). SRV_TestForCancel first inspects a queue of commands that are maintained by the SRV faci
If there is an entry on the queue, this command is removed and returned to the caller. Note that this m
be a cancel command. If that queue is empty,SRV_TestForCancel tries to read the next command from the
network. If a command is received, it is parsed. If the command is a cancel command, that comman
be returned to the caller. Other commands are placed on the queue.

Notes

The queueing mechanism and mode for returning commands that are not cancels make the behavio
sistent. The user needs to be aware that the function may return a command that is not a cancel. T
tion is normally called by the SRV functions for handling move and find commands (and not the gene
public).

Return Values

SRV_NORMAL
SRV_RECEIVEFAILED
SRV_PARSEFAILED
SRV_UNSUPPORTEDCOMMAND
54/54

	Programmer’s Guide to the SRV Facility
	1 Introduction
	2 Data Structures
	3 Include Files
	4 Return Values
	5 SRV Routines

	SRV_AcceptServiceClass
	SRV_CEchoRequest
	SRV_CEchoResponse
	SRV_CFindRequest
	SRV_CFindResponse
	SRV_CMoveRequest
	SRV_CMoveResponse
	SRV_CStoreRequest
	SRV_CStoreResponse
	SRV_Debug
	SRV_MessageIDIn
	SRV_MessageIDOut
	SRV_NActionRequest
	SRV_NActionResponse
	SRV_NCreateRequest
	SRV_NCreateResponse
	SRV_NDeleteRequest
	SRV_NDeleteResponse
	SRV_NEventReportRequest
	SRV_NEventReportResponse
	SRV_NGetRequest
	SRV_NGetResponse
	SRV_NSetRequest
	SRV_NSetResponse
	SRV_ReceiveCommand
	SRV_ReceiveDataSet
	SRV_RejectServiceClass
	SRV_RequestServiceClass
	SRV_SendCommand
	SRV_SendDataSet
	SRV_TestForCancel

